{-# OPTIONS --without-K --overlapping-instances #-}
open import HoTT hiding (_<_ ; ltS ; ltSR ; _+_ ; _×_)
import lib.types.Nat as N
import lib.types.Sigma as S
open import Pi.UFin.BAut
open import Pi.Common.Misc
open import Pi.Common.Extra
open import Pi.Syntax.Pi+.Indexed as Pi+
open import Pi.Syntax.Pi^ as Pi^
open import Pi.Syntax.Pi^Helpers as Pi^
open import Pi.Syntax.Pi as Pi
open import Pi.Equiv.Translation2
import Pi.Equiv.Equiv1 as Pi+
import Pi.Equiv.Equiv0Hat as Pi^
import Pi.Equiv.Equiv1Hat as Pi^
import Pi.Equiv.Equiv0Norm as Pi^
import Pi.Equiv.Equiv1Norm as Pi^
open import Pi.UFin.UFin
open import Pi.UFin.Monoidal
open import Pi.Common.FinHelpers
open import Pi.Lehmer.FinExcept
module Pi.Examples.Adder where
open import Pi.Examples.Base
open import Pi.Examples.Toffoli
{--
Write another circuit that does this addition:
0 -> 0
8 -> 8
n -> n + 8 `mod` 16
use algorithm in \cite{10.1145/775832.775915}
when we normalize we should get the same as reset+
f1 f2 f3 f4 f5 f6 f7 f8
cx(3,0) cx(2,0) ccx(2,3,0) cx(1,0) ccx(1,3,0) ccx(1,2,0) cccx(1,2,3,0)
0000 - 0000 0000 0000 0000 0000 0000 0000 0000
0001 - 1001 0001 0001 0001 0001 0001 0001 0001
0010 - 1010 1010 0010 0010 0010 0010 0010 0010
0011 - 1011 0011 1011 0011 0011 0011 0011 0011
0100 - 1100 1100 1100 1100 0100 0100 0100 0100
0101 - 1101 0101 0101 0101 1101 0101 0101 0101
0110 - 1110 1110 0110 0110 1110 1110 0110 0110
0111 - 1111 0111 1111 0111 1111 0111 1111 0111
1000 - 1000 1000 1000 1000 1000 1000 1000 1000
1001 - 0001 1001 1001 1001 1001 1001 1001 1001
1010 - 0010 0010 1010 1010 1010 1010 1010 1010
1011 - 0011 1011 0011 1011 1011 1011 1011 1011
1100 - 0100 0100 0100 0100 1100 1100 1100 1100
1101 - 0101 1101 1101 1101 0101 1101 1101 1101
1110 - 0110 0110 1110 1110 0110 0110 1110 1110
1111 - 0111 1111 0111 1111 0111 1111 0111 1111
circuit:
cccx(1,2,3,0);
ccx(1,2,0);
ccx(1,3,0);
cx(1,0);
ccx(2,3,0);
cx(2,0);
cx(3,0)
check
0000
0001
0010 1010
0011 1011 0011 1011
0100 1100
0101 1101 0101 1101
0110 1110 0110 1110
0111 1111 0111 1111 0111 1111 0111 1111
1000
1001 0001
1010 0010
1011 0011 1011 0011
1100 0100
1101 0101 1101 0101
1110 0110 1110 0110
1111 0111 1111 0111 1111 0111 1111 0111
--}
-- NOTE: This takes hours to normalise!
-- adder4 : 𝔹 4 Pi.⟷₁ 𝔹 4
-- adder4 = -- 0 x (1 x (2 x 3))
-- swap⋆ ◎ -- (1 x (2 x 3)) x 0
-- assocr⋆ ◎ -- 1 x ((2 x 3) x 0)
-- (id⟷₁ ⊗ assocr⋆) ◎ -- 1 x (2 x (3 x 0))
-- toffoli 4 ◎ -- 1 x (2 x (3 x 0))
-- (id⟷₁ ⊗ (id⟷₁ ⊗ swap⋆)) ◎ -- 1 x (2 x (0 x 3)
-- (id⟷₁ ⊗ assocl⋆) ◎ -- 1 x ((2 x 0) x 3)
-- assocl⋆ ◎ -- (1 x (2 x 0)) x 3
-- (toffoli 3 ⊗ id⟷₁) ◎ -- (1 x (2 x 0)) x 3
-- assocr⋆ ◎ -- 1 x ((2 x 0) x 3)
-- (id⟷₁ ⊗ swap⋆) ◎ -- 1 x (3 x (2 x 0))
-- (id⟷₁ ⊗ (id⟷₁ ⊗ swap⋆)) ◎ -- 1 x (3 x (0 x 2))
-- (id⟷₁ ⊗ assocl⋆) ◎ -- 1 x ((3 x 0) x 2)
-- assocl⋆ ◎ -- (1 x (3 x 0)) x 2
-- (toffoli 3 ⊗ id⟷₁) ◎ -- (1 x (3 x 0)) x 2
-- ((id⟷₁ ⊗ swap⋆) ⊗ id⟷₁) ◎ -- (1 x (0 x 3)) x 2
-- (assocl⋆ ⊗ id⟷₁) ◎ -- ((1 x 0) x 3) x 2
-- ((cnot ⊗ id⟷₁) ⊗ id⟷₁) ◎ -- ((1 x 0) x 3) x 2
-- assocr⋆ ◎ -- (1 x 0) x (3 x 2)
-- (swap⋆ ⊗ id⟷₁) ◎ -- (0 x 1) x (3 x 2)
-- swap⋆ ◎ -- (3 x 2) x (0 x 1)
-- assocl⋆ ◎ -- ((3 x 2) x 0) x 1
-- (assocr⋆ ⊗ id⟷₁) ◎ -- (3 x (2 x 0)) x 1
-- (toffoli 3 ⊗ id⟷₁) ◎ -- (3 x (2 x 0)) x 1
-- ((id⟷₁ ⊗ cnot) ⊗ id⟷₁) ◎ -- (3 x (2 x 0)) x 1
-- ((id⟷₁ ⊗ swap⋆) ⊗ id⟷₁) ◎ -- (3 x (0 x 2)) x 1
-- (assocl⋆ ⊗ id⟷₁) ◎ -- ((3 x 0) x 2) x 1
-- ((cnot ⊗ id⟷₁) ⊗ id⟷₁) ◎ -- ((3 x 0) x 2) x 1
-- ((swap⋆ ⊗ id⟷₁) ⊗ id⟷₁) ◎ -- ((0 x 3) x 2) x 1
-- (assocr⋆ ⊗ id⟷₁) ◎ -- (0 x (3 x 2)) x 1
-- assocr⋆ ◎ -- 0 x ((3 x 2) x 1)
-- (id⟷₁ ⊗ swap⋆) ◎ -- 0 x (1 x (3 x 2))
-- (id⟷₁ ⊗ (id⟷₁ ⊗ swap⋆)) -- 0 x (1 x (2 x 3))
-- adder4+ : Pi^.quote^₀ 16 Pi+.⟷₁ Pi^.quote^₀ 16
-- adder4+ = (Pi^.quote^₁ ∘ Pi^.quoteNorm₁ idp ∘ Pi^.evalNorm₁ ∘ eval₁) adder4
-- adder4+test : Fin 16 → Fin 16
-- -- adder4+test = –> (Pi+.eval₁ (adder+))
-- adder4+test = –> (Pi^.evalNorm₁ (eval₁ adder4))
adder31 : 𝔹 3 Pi.⟷₁ 𝔹 3
adder31 = -- 0 * (1 * 2)
swap⋆ ◎ -- (1 * 2) * 0
(swap⋆ ⊗ id⟷₁) ◎ -- (2 * 1) * 0
assocr⋆ -- 2 * (1 * 0)
adder32 : 𝔹 3 Pi.⟷₁ 𝔹 3
adder32 =
toffoli 3 ◎ -- 2 * (1 * 0)
(id⟷₁ ⊗ cnot) -- 2 * (1 * 0)
adder33 : 𝔹 3 Pi.⟷₁ 𝔹 3
adder33 =
assocl⋆ ◎ -- (2 * 1) * 0
(swap⋆ ⊗ id⟷₁) ◎ -- (1 * 2) * 0
assocr⋆ -- 1 * (2 * 0)
adder34 : 𝔹 3 Pi.⟷₁ 𝔹 3
adder34 =
(id⟷₁ ⊗ cnot) ◎ -- 1 * (2 * 0)
assocl⋆ ◎ -- (1 * 2) * 0
swap⋆ -- 0 * (1 * 2)
adder3 : 𝔹 3 Pi.⟷₁ 𝔹 3
adder3 =
adder31 ◎
adder32 ◎
adder33 ◎
adder34
-- adder3+test : Fin 8 → Fin 8
-- adder4+test = –> (Pi+.eval₁ (adder3+))
-- adder3+test = –> (Pi^.evalNorm₁ (eval₁ adder3))
open import Pi.Lehmer.Lehmer2
open import Pi.Equiv.Equiv1NormHelpers
open import Pi.Coxeter.Lehmer2CoxeterEquiv
fastadder3+test : Lehmer 7
fastadder3+test = (Pi^.fastevalNorm₁ (eval₁ adder3))
fastadder3+test2 = eval₁ adder3
fastadder3+test3 = (pi^2list fastadder3+test2)
fastadder3+test4 = immersion⁻¹ fastadder3+test3
adderPerm : Aut (Fin 8)
adderPerm = equiv f f f-f f-f
where f : Fin 8 → Fin 8
f (O , ϕ) = 0
f (1 , ϕ) = 5
f (2 , ϕ) = 6
f (3 , ϕ) = 7
f (4 , ϕ) = 4
f (5 , ϕ) = 1
f (6 , ϕ) = 2
f (7 , ϕ) = 3
f (n , N.ltSR (N.ltSR (N.ltSR (N.ltSR (N.ltSR (N.ltSR (N.ltSR (N.ltSR ()))))))))
f-f : (x : Fin 8) → f (f x) == x
f-f (O , ϕ) = fin= idp
f-f (1 , ϕ) = fin= idp
f-f (2 , ϕ) = fin= idp
f-f (3 , ϕ) = fin= idp
f-f (4 , ϕ) = fin= idp
f-f (5 , ϕ) = fin= idp
f-f (6 , ϕ) = fin= idp
f-f (7 , ϕ) = fin= idp
f-f (n , N.ltSR (N.ltSR (N.ltSR (N.ltSR (N.ltSR (N.ltSR (N.ltSR (N.ltSR ()))))))))
adderPerm^ : 8 Pi^.⟷₁^ 8
adderPerm^ = Pi^.quoteNorm₁ idp adderPerm
adderPerm+ : 𝟠+ Pi+.⟷₁ 𝟠+
adderPerm+ = Pi^.quote^₁ adderPerm^
fastadder+test231 = eval₁ adder31
fastadder+test331 = (pi^2list fastadder+test231)
fastadder+test431 = immersion⁻¹ fastadder+test331
fastadder+test31 = Pi^.fastevalNorm₁ (eval₁ adder31)
slowadder+test31 = Pi^.evalNorm₁ (eval₁ adder31)
fastadder+test32 = Pi^.fastevalNorm₁ (eval₁ adder32)
slowadder+test32 = Pi^.evalNorm₁ (eval₁ adder32)
fastadder+test33 = Pi^.fastevalNorm₁ (eval₁ adder33)
slowadder+test33 = Pi^.evalNorm₁ (eval₁ adder33)
fastadder+test34 = Pi^.fastevalNorm₁ (eval₁ adder34)
slowadder+test34 = Pi^.evalNorm₁ (eval₁ adder34)
adder+test34-perm : Aut (Fin 8)
adder+test34-perm =
slowadder+test34 ∘e slowadder+test33 ∘e slowadder+test32 ∘e slowadder+test31
-- compose in reverse order
adder+test34+ : Pi^.quote^₀ 8 Pi+.⟷₁ Pi^.quote^₀ 8
adder+test34+ = (Pi^.quote^₁ ∘ Pi^.quoteNorm₁ idp) adder+test34-perm
adder+test34+-full : Pi^.quote^₀ 8 Pi+.⟷₁ Pi^.quote^₀ 8
adder+test34+-full = (Pi^.quote^₁ ∘ Pi^.quoteNorm₁ idp ∘ Pi^.evalNorm₁ ∘ eval₁) adder3
open import Pi.Examples.Interp
private
x = interp+-elems adder+test34+
y = interp+-elems adder+test34+-full
{-
(true , inr (inr (inr (inr true)))) ::
(inr true , inr (inr (inr (inr (inr true))))) ::
(inr (inr true) , inr (inr (inr (inr (inr (inr true)))))) ::
(inr (inr (inr true)) , inr (inr (inr true))) ::
(inr (inr (inr (inr true))) , true) ::
(inr (inr (inr (inr (inr true)))) , inr true) ::
(inr (inr (inr (inr (inr (inr true))))) , inr (inr true)) ::
(inr (inr (inr (inr (inr (inr (inr true)))))) ,
inr (inr (inr (inr (inr (inr (inr true)))))))
:: nil
(true , inr (inr (inr (inr true)))) ::
(inr true , inr (inr (inr (inr (inr true))))) ::
(inr (inr true) , inr (inr (inr (inr (inr (inr true)))))) ::
(inr (inr (inr true)) , inr (inr (inr true))) ::
(inr (inr (inr (inr true))) , true) ::
(inr (inr (inr (inr (inr true)))) , inr true) ::
(inr (inr (inr (inr (inr (inr true))))) , inr (inr true)) ::
(inr (inr (inr (inr (inr (inr (inr true)))))) ,
inr (inr (inr (inr (inr (inr (inr true)))))))
:: nil
-}
{-
adder3:
(id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕
id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊)
◎
(id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎
(id⟷₁ ⊕ id⟷₁ ⊕ assocl₊ ◎ (swap₊ ⊕ id⟷₁) ◎ assocr₊) ◎ id⟷₁
-}