{-# OPTIONS --without-K --exact-split --rewriting #-}
module Pi.Equiv.Equiv1Norm where
open import Pi.Syntax.Pi+.Indexed as Pi
open import Pi.Syntax.Pi^ as Pi^
open import Pi.UFin.UFin
open import Pi.Common.Extra
open import Pi.Lehmer.Lehmer2 using (Lehmer)
open import Pi.Lehmer.Lehmer2FinEquiv
open import Pi.Coxeter.Lehmer2CoxeterEquiv
open import Pi.Coxeter.Sn
open import Pi.Coxeter.Coxeter
open import Pi.UFin.UFinLehmer2Equiv
open import Pi.Equiv.Equiv0Norm
open import Pi.Equiv.Equiv1NormHelpers
open import lib.Basics
open import lib.types.Fin
open import lib.types.List
open import lib.types.BAut
open import lib.types.Nat
open import lib.types.Truncation
open import lib.NType2
open import lib.types.SetQuotient
open import lib.types.Coproduct
open import lib.types.Sigma
private
variable
n m : ℕ
lehmer2pi^ : {n m : ℕ} → (n == m) → Lehmer n → S n ⟷₁^ S m
lehmer2pi^ p cl = list2pi^I p (immersion cl)
pi^2lehmer : (S n) ⟷₁^ (S m) → Lehmer n
pi^2lehmer p = immersion⁻¹ (pi^2list p)
pi^2pi^ : (c : (S n) ⟷₁^ (S m)) →
(lehmer2pi^ (ℕ-S-is-inj _ _ (⟷₁^-eq-size c)) (pi^2lehmer c)) ⟷₂^ c
pi^2pi^ {n} c with (⟷₁^-eq-size c)
... | idp =
let lemma : immersion (immersion⁻¹ (pi^2list c)) ≈* (pi^2list c)
lemma = immersion∘immersion⁻¹ (pi^2list c)
in _■^_ (piRespectsCoxI (ℕ-S-is-inj _ _ (⟷₁^-eq-size c)) _ _ lemma) (pi^2list2pi^ c)
lehmer2lehmer : {n : ℕ} → (p : Lehmer n) → pi^2lehmer (lehmer2pi^ idp p) == p
lehmer2lehmer {n} p =
ap immersion⁻¹ (list2list (immersion p)) ∙ immersion⁻¹∘immersion p
evalNorm₁ : (c : n ⟷₁^ m) → Aut (Fin n)
evalNorm₁ {O} c with (⟷₁^-eq-size c)
... | idp = ide _
evalNorm₁ {S n} c with (⟷₁^-eq-size c)
... | idp =
let step1 : Lehmer n
step1 = pi^2lehmer c
step2 : Aut (Fin (S n))
step2 = <– Fin≃Lehmer step1
in step2
fastevalNorm₁ : (c : S n ⟷₁^ S n) → Lehmer n
fastevalNorm₁ = pi^2lehmer
quoteNorm₁ : {n m : ℕ} → (pn : n == m) → Aut (Fin n) → n ⟷₁^ m
quoteNorm₁ {O} idp p = id⟷₁^
quoteNorm₁ {S n} {S m} q p =
let step1 : Lehmer n
step1 = –> Fin≃Lehmer p
step2 = lehmer2pi^ (ℕ-S-is-inj _ _ q) step1
in step2
quote-evalNorm₁ : {n m : ℕ} → (c : n ⟷₁^ m) → quoteNorm₁ (⟷₁^-eq-size c) (evalNorm₁ c) ⟷₂^ c
quote-evalNorm₁ {O} c with (⟷₁^-eq-size c)
... | idp = (c₊⟷₂id⟷₁^ _) ■^ (!⟷₂^ (c₊⟷₂id⟷₁^ c))
quote-evalNorm₁ {S n} p with (⟷₁^-eq-size p)
... | idp =
let cancelSn : –> Fin≃Lehmer (<– Fin≃Lehmer (pi^2lehmer p)) == pi^2lehmer p
cancelSn = <–-inv-r Fin≃Lehmer (pi^2lehmer p)
sizes = (ℕ-S-is-inj _ _ (⟷₁^-eq-size p))
cancelNorm : lehmer2pi^ sizes (–> Fin≃Lehmer (<– Fin≃Lehmer (pi^2lehmer p))) ⟷₂^ p
cancelNorm = transport (λ e -> lehmer2pi^ sizes e ⟷₂^ p) (! cancelSn) (pi^2pi^ p)
in cancelNorm
eval-quoteNorm₁ : {n : ℕ} → (p : Aut (Fin n)) → evalNorm₁ (quoteNorm₁ idp p) == p
eval-quoteNorm₁ {O} p = contr-has-all-paths {{Aut-FinO-level}} _ _
eval-quoteNorm₁ {S n} p =
let cancelNorm : pi^2lehmer (lehmer2pi^ idp (–> Fin≃Lehmer p)) == (–> Fin≃Lehmer p)
cancelNorm = lehmer2lehmer (–> Fin≃Lehmer p)
cancelSn : <– Fin≃Lehmer (pi^2lehmer (lehmer2pi^ idp (–> Fin≃Lehmer p))) == p
cancelSn = ap (<– Fin≃Lehmer) cancelNorm ∙ <–-inv-l Fin≃Lehmer p
in cancelSn