{-# OPTIONS --without-K --rewriting --overlapping-instances #-}
module Pi.Coxeter.Lehmer2SnEquiv where
open import lib.Base
open import lib.NType
open import lib.NType2
open import lib.Equivalence
open import lib.PathGroupoid
open import lib.types.Fin
open import lib.types.List
open import lib.types.Nat
open import Pi.Lehmer.Lehmer2
open import Pi.Coxeter.Lehmer2CoxeterEquiv
open import Pi.Coxeter.Sn
open import Pi.Coxeter.Coxeter
open import Pi.Common.Misc
Lehmer≃Coxeter : {n : ℕ} -> Lehmer n ≃ Sn n
Lehmer≃Coxeter = equiv f g f-g g-f
where
f : {n : ℕ} -> Lehmer n → Sn n
f {O} f = q[ nil ]
f {S n} = q[_] ∘ immersion
g-q : {n : ℕ} -> List (Fin n) → Lehmer n
g-q = immersion⁻¹
g-rel : {n : ℕ} -> {m1 m2 : List (Fin n)} → m1 ≈* m2 → g-q m1 == g-q m2
g-rel = immersion⁻¹-respects≈
g : {n : ℕ} -> Sn n → Lehmer n
g {n} = SetQuot-rec {B = Lehmer n} g-q g-rel
f-g-q : {n : ℕ} -> (m : List (Fin n)) → f (g q[ m ]) == q[ m ]
f-g-q {O} nil = idp
f-g-q {S n} m = quot-rel (immersion∘immersion⁻¹ m)
f-g : {n : ℕ} -> (l : Sn n) → f (g l) == l
f-g = SetQuot-elim {P = λ l → f (g l) == l} f-g-q (λ _ → prop-has-all-paths-↓)
g-f : {n : ℕ} -> (cl : Lehmer n) → g (f cl) == cl
g-f {O} (O , ϕ) = fin= idp
g-f {O} (S m , ltSR ())
g-f {S n} cl = immersion⁻¹∘immersion {n = S n} cl