Documentation

Init.Grind.FieldNormNum

@[reducible, inline]
abbrev Lean.Grind.Field.NormNum.ofRat {α : Type u_1} [Field α] (r : Rat) :
α
Equations
Instances For
    theorem Lean.Grind.Field.NormNum.ofRat_add' {α : Type u_1} [Field α] {a b : Rat} (ha : a.den 0) (hb : b.den 0) :
    ofRat (a + b) = ofRat a + ofRat b
    theorem Lean.Grind.Field.NormNum.ofRat_mul' {α : Type u_1} [Field α] {a b : Rat} (ha : a.den 0) (hb : b.den 0) :
    ofRat (a * b) = ofRat a * ofRat b
    theorem Lean.Grind.Field.NormNum.ofRat_add {α : Type u_1} [Field α] [IsCharP α 0] (a b : Rat) :
    ofRat (a + b) = ofRat a + ofRat b
    theorem Lean.Grind.Field.NormNum.ofRat_mul {α : Type u_1} [Field α] [IsCharP α 0] (a b : Rat) :
    ofRat (a * b) = ofRat a * ofRat b
    theorem Lean.Grind.Field.NormNum.ofRat_div' {α : Type u_1} [Field α] {a b : Rat} (ha : a.den 0) (hb : b.num 0) :
    ofRat (a / b) = ofRat a / ofRat b
    theorem Lean.Grind.Field.NormNum.ofRat_div {α : Type u_1} [Field α] [IsCharP α 0] (a b : Rat) :
    ofRat (a / b) = ofRat a / ofRat b
    theorem Lean.Grind.Field.NormNum.ofRat_sub' {α : Type u_1} [Field α] {a b : Rat} (ha : a.den 0) (hb : b.den 0) :
    ofRat (a - b) = ofRat a - ofRat b
    theorem Lean.Grind.Field.NormNum.ofRat_sub {α : Type u_1} [Field α] [IsCharP α 0] (a b : Rat) :
    ofRat (a - b) = ofRat a - ofRat b
    theorem Lean.Grind.Field.NormNum.ofRat_npow' {α : Type u_1} [Field α] {a : Rat} (ha : a.den 0) (n : Nat) :
    ofRat (a ^ n) = ofRat a ^ n
    theorem Lean.Grind.Field.NormNum.ofRat_npow {α : Type u_1} [Field α] [IsCharP α 0] (a : Rat) (n : Nat) :
    ofRat (a ^ n) = ofRat a ^ n
    theorem Lean.Grind.Field.NormNum.ofRat_zpow' {α : Type u_1} [Field α] {a : Rat} (ha : a.den 0) (n : Int) :
    ofRat (a ^ n) = ofRat a ^ n
    theorem Lean.Grind.Field.NormNum.ofRat_zpow {α : Type u_1} [Field α] [IsCharP α 0] (a : Rat) (n : Int) :
    ofRat (a ^ n) = ofRat a ^ n
    theorem Lean.Grind.Field.NormNum.natCast_eq {α : Type u_1} [Field α] (n : Nat) :
    n = ofRat n
    theorem Lean.Grind.Field.NormNum.add_eq {α : Type u_1} [Field α] [IsCharP α 0] (a b : α) (v₁ v₂ v : Rat) :
    (v == v₁ + v₂) = truea = ofRat v₁b = ofRat v₂a + b = ofRat v
    theorem Lean.Grind.Field.NormNum.sub_eq {α : Type u_1} [Field α] [IsCharP α 0] (a b : α) (v₁ v₂ v : Rat) :
    (v == v₁ - v₂) = truea = ofRat v₁b = ofRat v₂a - b = ofRat v
    theorem Lean.Grind.Field.NormNum.mul_eq {α : Type u_1} [Field α] [IsCharP α 0] (a b : α) (v₁ v₂ v : Rat) :
    (v == v₁ * v₂) = truea = ofRat v₁b = ofRat v₂a * b = ofRat v
    theorem Lean.Grind.Field.NormNum.div_eq {α : Type u_1} [Field α] [IsCharP α 0] (a b : α) (v₁ v₂ v : Rat) :
    (v == v₁ / v₂) = truea = ofRat v₁b = ofRat v₂a / b = ofRat v
    theorem Lean.Grind.Field.NormNum.inv_eq {α : Type u_1} [Field α] (a : α) (v₁ v : Rat) :
    (v == v₁⁻¹) = truea = ofRat v₁a⁻¹ = ofRat v
    theorem Lean.Grind.Field.NormNum.neg_eq {α : Type u_1} [Field α] (a : α) (v₁ v : Rat) :
    (v == -v₁) = truea = ofRat v₁-a = ofRat v
    theorem Lean.Grind.Field.NormNum.npow_eq {α : Type u_1} [Field α] [IsCharP α 0] (a : α) (n : Nat) (v₁ v : Rat) :
    (v == v₁ ^ n) = truea = ofRat v₁a ^ n = ofRat v
    theorem Lean.Grind.Field.NormNum.zpow_eq {α : Type u_1} [Field α] [IsCharP α 0] (a : α) (n : Int) (v₁ v : Rat) :
    (v == v₁ ^ n) = truea = ofRat v₁a ^ n = ofRat v
    theorem Lean.Grind.Field.NormNum.eq_int {α : Type u_1} [Field α] (a : α) (v : Rat) (n : Int) :
    (n == v.num && v.den == 1) = truea = ofRat va = IntCast.intCast n
    theorem Lean.Grind.Field.NormNum.eq_inv {α : Type u_1} [Field α] (a : α) (v : Rat) (d : Nat) :
    (v.num == 1 && v.den == d) = truea = ofRat va = (d)⁻¹
    theorem Lean.Grind.Field.NormNum.eq_mul_inv {α : Type u_1} [Field α] (a : α) (v : Rat) (n : Int) (d : Nat) :
    (v.num == n && v.den == d) = truea = ofRat va = IntCast.intCast n * (d)⁻¹