Documentation

EventStructures.Path

structure Edge (es : EventStructure) :

An edge in the configuration graph of an event structure: from configuration c₁ to configuration c₂ by adding event e.

Instances For
    inductive Path (es : EventStructure) :
    Conf esConf esType

    A path in the configuration graph of an event structure.

    Instances For
      def Path.path_id (es : EventStructure) (c : Conf es) :
      Path es c c

      Identity path.

      Equations
      Instances For
        def Path.path_comp (es : EventStructure) {c₁ c₂ c₃ : Conf es} (h₁₂ : Path es c₁ c₂) (h₂₃ : Path es c₂ c₃) :
        Path es c₁ c₃

        Composition of paths.

        Equations
        Instances For
          theorem Path.path_comp_id (es : EventStructure) {c₁ c₂ : Conf es} (h : Path es c₁ c₂) :
          path_comp es h (path_id es c₂) = h

          Left identity law: composing with the identity path on the right.

          theorem Path.path_id_comp (es : EventStructure) {c₁ c₂ : Conf es} (h : Path es c₁ c₂) :
          path_comp es (path_id es c₁) h = h

          Right identity law: composing with the identity path on the left.

          theorem Path.path_comp_assoc (es : EventStructure) {c₁ c₂ c₃ c₄ : Conf es} (h₁₂ : Path es c₁ c₂) (h₂₃ : Path es c₂ c₃) (h₃₄ : Path es c₃ c₄) :
          path_comp es (path_comp es h₁₂ h₂₃) h₃₄ = path_comp es h₁₂ (path_comp es h₂₃ h₃₄)

          Associativity law: composition of paths is associative.

          def Path.trace (es : EventStructure) {c₁ c₂ : Conf es} (hPath : Path es c₁ c₂) :

          Trace of the path

          Equations
          Instances For
            instance Path.pathSetoid (es : EventStructure) (c₁ c₂ : Conf es) :
            Setoid (Path es c₁ c₂)

            Path equivalence is the kernel of the trace function.

            Equations
            def Path.PathEquiv (es : EventStructure) {c₁ c₂ : Conf es} (p₁ p₂ : Path es c₁ c₂) :

            Two paths are equivalent if their traces are trace equivalent

            Equations
            Instances For
              theorem Path.pathEquiv_refl (es : EventStructure) {c₁ c₂ : Conf es} :

              Path equivalence is reflexive.

              theorem Path.pathEquiv_symm (es : EventStructure) {c₁ c₂ : Conf es} :

              Path equivalence is symmetric.

              theorem Path.pathEquiv_trans (es : EventStructure) {c₁ c₂ : Conf es} :

              Path equivalence is transitive.

              theorem Path.trace_comp (es : EventStructure) {c₁ c₂ c₃ : Conf es} (p₁₂ : Path es c₁ c₂) (p₂₃ : Path es c₂ c₃) :
              trace es (path_comp es p₁₂ p₂₃) = trace es p₁₂ ++ trace es p₂₃

              Trace of path composition is concatenation of traces.

              def Path.Async (es : EventStructure) (c₁ c₂ : Conf es) :

              Asynchronous path: paths quotiented by path equivalence.

              Equations
              Instances For
                def Path.Async.mk (es : EventStructure) {c₁ c₂ : Conf es} (p : Path es c₁ c₂) :
                Async es c₁ c₂

                Lift a path to an asynchronous path.

                Equations
                Instances For

                  Identity asynchronous path.

                  Equations
                  Instances For
                    def Path.Async.async_path_comp (es : EventStructure) {c₁ c₂ c₃ : Conf es} (p₁₂ : Async es c₁ c₂) (p₂₃ : Async es c₂ c₃) :
                    Async es c₁ c₃

                    Composition of asynchronous paths.

                    Equations
                    Instances For
                      theorem Path.Async.async_path_id_comp (es : EventStructure) {c₁ c₂ : Conf es} (p : Async es c₁ c₂) :

                      Left identity law for asynchronous path composition.

                      theorem Path.Async.async_path_comp_id (es : EventStructure) {c₁ c₂ : Conf es} (p : Async es c₁ c₂) :

                      Right identity law for asynchronous path composition.

                      theorem Path.Async.assoc (es : EventStructure) {c₁ c₂ c₃ c₄ : Conf es} (p₁₂ : Async es c₁ c₂) (p₂₃ : Async es c₂ c₃) (p₃₄ : Async es c₃ c₄) :
                      async_path_comp es (async_path_comp es p₁₂ p₂₃) p₃₄ = async_path_comp es p₁₂ (async_path_comp es p₂₃ p₃₄)

                      Associativity law for asynchronous path composition.

                      The path category of an event structure.

                      Equations

                      The asynchronous path category of an event structure.

                      Equations